

MAY/JUNE 2016

ş

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

CHEMISTRY

UNIT 1 - Paper 02

2 hours 30 minutes

	READ THE FOLLOWING INSTRUCTIONS CAREFULLY.	
1.	This paper consists of SIX questions in TWO sections. Answer ALL questions.	
2.	Write your answers in the spaces provided in this booklet.	
3.	Do NOT write in the margins.	
4.	Where appropriate, ALL WORKING MUST BE SHOWN in this booklet.	
5.	A data booklet is provided.	
6	You may use a silent, non-programmable calculator to answer questions.	
7	If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra lined page(s) provided at the back of this booklet. Remember to draw a line through your original answer.	
8	If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.	

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2015 Caribbean Examinations Council

SECTION A

- 4 -

Answer ALL questions.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

(a) John Dalton proposed the atomic theory in 1803.

1.

:

(i) State THREE postulates of Dalton's atomic theory.

•	
	[2 marks]

		-		
				-) -
				·
			(ii)	Later developments in science led to the modification of the atomic theory. Evaluin
				the modification of ONE of the postulates
				billion of or die postulates.
5	5			
5				
				·
0	0			
ã				
				[2 marks]
				()
		(b)	The did	chromate(VI) ion reacts in an acidic medium according to the following half-equation:
	S		Cr.O.	$^{2-}(aq) + 14 H^{+}(aq) + 6e^{-} - 2 Cr^{3+}(aq) + 7 H O(1)$
\$			2 1	(1) (1) (1) (1) (1) (1) (1)
			(i)	Identify the ion responsible for the green colour
			(-)	the first the point of the green colour.
	2			
				[1 mork]
				[1 mark]
			(ii)	Given that the sulfate(IV) ion SO 2^{-1} is converted to the sulfate(VI) ion SO 2^{-1} in
			()	the presence of water deduce the balanced equation for the redex resction between
9	0			$Cr O ^{2}$ (ag) and SO 2
A				
				$o_2 o_7$ (uq) and o_3 .
and the lot of the	S			$c_2 c_7$ (eq) and $c_3 c_3$.
	Š			$c_2 c_7$ (eq) and $c_3 c_3$.
4 R F 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O N N N N N			
	0 NHKE4			
	O F H K K K K K K K K K K K K K K K K K K			
ATHIS WREA	0 F J XF SJHL			
IN THIS WREAL IN THE STATE OF	D THIS AREA			(4 marks)
DE IN DHIS AREA	D IIII IIII D			(4 marks)
QIDEIN THIS VREA	UTE IN THIS AREA		(iii)	[4 marks] Identify the oxidizing agent in (b) (ii).
WRITTEIN THIS AREA	WRITE IN THIS AREA		(iii)	[4 marks] Identify the oxidizing agent in (b) (ii).
A WANDE IN THIS AREA	T WRITE IN THIS AREA		(iii)	[4 marks] Identify the oxidizing agent in (b) (ii).
Norwarde in This area	VOT WRITE IN THIS AREA		(iii)	[4 marks] Identify the oxidizing agent in (b) (ii). [1 mark]
O NOT WRITE IN THIS AREA	0 NOT WRITE IN THIS AREA	, Še	(iii)	[4 marks] Identify the oxidizing agent in (b) (ii). [1 mark]
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA	ي فو	(iii)	[4 marks] Identify the oxidizing agent in (b) (ii). [1 mark]

٩,

(c)

5.

橋

The results of two tests are to be recorded in Table 1. Complete the table by inserting the missing observations or inferences.

Test	Observation	Inference
 (i) Chlorine water is added to potassium bromide solution followed by aqueous silver nitrate. 	• • White precipitate formed	 Br⁻ oxidized to Br₂
 (ii) Bromine water is added to potassium chloride solution followed by aqueous silver nitrate. 	 White precipitate formed on addition of AgNO₃(aq) 	•

TABLE 1: RESULTS OF TESTS

[5 marks]

•

Total 15 marks

			MODULE 2
			KINETICS AND EQUILIBRIA
	2 . (a)	Define	EACH of the following terms:
		(i)	Weak acid
ما در است. ما			
			·
			[1 mark]
		(ii)	K,
			. [2 marks]
11111111111			
1			

- In aqueous solution, carbonic acid forms a weak acidic solution containing the hydrogen carbonate ion.
 - (i) Write an equation to represent the dissociation of carbonic acid in aqueous solution.

(ii) Write the K_a expression for the reaction in (b) (i).

.

[1 mark]

[2 marks]

(iii) Calculate the pH of a 0.100 mol dm⁻³ aqueous solution of carbonic acid. ($K_a = 4.5 \times 10^{-7} \text{ mol dm}^{-3} \text{ at } 25 \text{ °C.}$)

[4 marks]

GO ON TO THE NEXT PAGE

ς,

. -

(b)

		- 9 -
	(c)	A student was given a particular brand of all hands (
		the carbonic acid content. Outline the experimental stans required for the
		the student is given 200 cm ³ of 0.100 mol dm ⁻³ sodium hydroxide solution
		source in source in yoroxide solution.
		<u></u>
$\leq \leq$		
2 2		
2 2		
0		
22		
àò		
		N
22		
X X		[5 marks]
00		· · · · · · · · · · · · · · · · · · ·
		Total 15 marks
ăă		
च च		
22		
7		
99		
20		
99		

ł

MODULE 3

CHEMISTRY OF THE ELEMENTS

Figure 1 shows the melting points of the elements in Period 3.

٩.,

3.

(a) Explain, in terms of structure and bonding, why

			د.	
		- 11 -	٦	. •
	(ii)	silicon has the highest melting point in the period		د د
02 00 02 00			[2 marks]	
	(iii)	sulfur melts at a higher temperature than phosphorous.	[2 min no]	
				-
122 A R.H.				* *
		·····		
00000			[3 marks]	
15 ARE				
WRIT				- +
ON OO OV OO	şîn.			•
			IF NEXT PAGE	

(b)

λ.

¢

The reactions of the oxides of magnesium and phosphorous with water are to be summarized in Table 2.

Oxide	Reaction with Water	pH of Resulting Liquid
MgO		
P₄O ₁₀		

TABLE 2: REACTION OF OXIDES WITH WATER

(i) Complete Table 2 by describing the reaction of EACH oxide with water and suggesting a pH value for the resulting liquid. [2 marks]

(ii) Write the equation which represents the reaction of water with P_4O_{10} .

[2 marks]

- 1	4	-	

SECTION B

Answer ALL questions.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

(a)

(i)

4.

Describe how the bonds are formed in EACH of the solids, potassium chloride and iodine.

[4 marks]

CO ON TO THE NEVT DAGE

1

÷

DO NOT WRITE IN THIS AREA" DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

Complete Table 3 by comparing the physical properties of potassium chloride (ii) (KCl) and iodine (I_2) .

Properties	ĶCI	I ₂
Melting/Boiling point	High	Low
Electrolytic conductivity	•	•
Solubility in water	•	•

TABLE 3: SOME PHYSICAL PROPERTIES OF KCI AND I₂

[2 marks]

GO ON TO THE NEXT PAGE

à

I		
(b)	Accou	ant for EACH of the following statements:
	(i)	The boiling point of H_2O is higher than that of H_2S .
4		»
		· · · · · · · · · · · · · · · · · · ·
		[3 marks
	(ii)	[3 marks] The molecules of aluminium fluoride in the presence of ammonia forms a whi solid of formula NH_3AIF_3 . (Include an appropriate equation in your account.)
	(ii)	[3 marks] The molecules of aluminium fluoride in the presence of ammonia forms a whi solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks] The molecules of aluminium fluoride in the presence of ammonia forms a whi solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks] The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)
	(ii)	[3 marks The molecules of aluminium fluoride in the presence of ammonia forms a whit solid of formula NH ₃ AIF ₃ . (Include an appropriate equation in your account.)

OO ON TO THE NEWT BACE

	<u> </u>	- 17 -	. •
	(c)	Explain the difference between the shapes of NH_3 and NH_4^+ .	••
S IX			
100 100			
00			
			·
			۰.
		[3 marks]	
		Total 15 marks	
AA 200		·	
N N N			
181			
No.		and the second	۰.
8		GO ON TO THE NEXT PAGE	

•

MODULE 2

KINETICS AND EQUILIBRIA

5. The following equation represents the reaction between hydrogen and iodine.

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g), \Delta H = -10 \text{ kJ mol}^{-1}$$

۰.

(a)

The reaction is said to be in a state of equilibrium at a particular temperature and pressure.

(i)	State FOUR characteristics of a reaction in 'dynamic equilibrium'.				
	•				
		[4 marks			
		•			

 Write the expression for the equilibrium constant in terms of partial pressures, K_p, for the reaction shown by the equation above.

[2 marks]

(iii)	State TWO factors which would NOT affect the equilibrium of the reaction shown
	by the equation above.

[2 marks]

	Γ-		10
	J		- 19 -
	(b)	Desci	ibe the effect of decreasing the temperature on
		(i)	the equilibrium of the reaction
			[2 marks]
		(ii)	the value of K_{p} .
			[2 marks]
	(c)	When	0.5 mol of hydrogen and 0.5 mol of iodine are allowed to reach equilibrium in a
		1.00 d is 0.78	m ³ flask at 500 °C and 1.01 × 10 ⁵ N m ⁻² , the amount of hydrogen iodide at equilibrium β mol. Calculate K _a at 500 °C if the total pressure is 1 Pa.
			[3 marks]
		ś.	Total 15 marks
<u> </u>			GO ON TO THE NEXT PAGE

ċ.

MODULE 3

CHEMISTRY OF THE ELEMENTS

(a)	List FOUR properties of transition metals.
(a)	List FOUR properties of transition metals.

	,
	•
[4 marks]	

GO ON TO THE NEXT PAGE

×

۰.

6.

-

٩.

	_		- 21 -
	(b)	Titaniı	um(III) chloride forms a violet solution when dissolved in water.
		(i)	Write the electronic configuration using the s, p and d orbitals of the titanium ion.
		()	
			[1 mark]
		(ii)	Explain the colour of the aqueous solution.
9			
			[4 marks]
Ž		in. '	
9			GO ON TO THE NEXT PAGE

(c)	(i)	Describe what would be observed when concentrated hydrochloric acid is slowly added to an aqueous solution of Co ²⁺ .
		[1 mark]

- 22 -

(ii) Write an ionic equation to represent the observation in (c) (i).

7

۶.

_ *

[2 marks]

(iii)	Using the concept of stability constant, explain the changes observed in (c) (ii).				
	~ 				
	[3 marks]				
	Total 15 marks				

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.